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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL MEMORANDUM NO. 810

- IMPACT OF A VEE—TYPE SEAPLANE ON WATER WITH
REFERENCE TO ELASTICITY*
By F. Weinig
The theory developed by H. Wagner for the computation
of the landing impact on water for a rigid float is extend-

ed to include elastic floats by introducing the concept of
an equivalent rigid bottom to substitute for the actual

elastic bottom.

OBJECT OF INVESTIGATION

The theory developed by H. Wagner for the computation
of the landing of float bottoms on the water is extended
to include bottoms having elasticity in order to take ac-

"count of the elasticity factor on the landing impact.

WAGNER'S THEQORY OF THE IMPACT OF VEE-TYPE FLOATS

WITH RIGID BOTTOMS

Let the downward velocity of the seaplane V just
before impact be denoted by V,. During the immersion
process which is assumed to start at & = 0, V = V(t).

In investigating the impact we assume for convenience
that the float is at rest while the water is in motion
relative to it, XEssentially this flow is similar to that
of an infinite fluid about a flat plate at rest, the width
2c of the plate corresponding to the 1nstantaneous width
of the impact area of the float (fig. 1). The velocity of

*"Berucksichtigung der Elastizitat beim Aufschlag eines
gekielten Flugzeugschwimmers auf das Wasser.,".
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the water particles at the free surface (X > c¢) is

v
V=Vn=._________.._

/1 - &
i?
The rise Y of thé water measured from the instant of im-
mersion 1is
t t vV dt
Y=f Vndt-_—'f
o)

0 1 - ¢
. =

The width of the impact area increases with time; i,.,e.,
¢ = c(t), so that since t = t(c), V = V(c) and with

v B < u(c) dc
dc/dt’ ¥ —c=fo L E
. ol

As socon as the water particle., 2%t position X reaches the
edge of the impact ares, c =X and Y = Yy, sc that

u(e) =

L u(e) de
Y'h = f ——me——
We set
Ty, c . q . fﬁ u(t) at (1)

X
v EgrE * ey bt g

VEND),

Let the bottom shape be expressed by:

N(x) = B, x + By x2 + By %3 + ...- (2)
Then u.(E)='Y1 + Yo E+'Y;3 Es"' s e
. . - » C £ . .
Since ¢ < X, 1if we set ¥ =3 = sin a, then expression
(2) becomes TN(x) = B1 x + Bg x2 + Bz x° ....
Cm/2

=x f (Y + Y% x sin a + ¥ x2 sin® a + ....) do
0
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2
u(g) = ky By + ko Ba £ + ks Bz £ + ... (2a)
‘where
2 o cac - )
kl = F - =-O-636; ka = 1 = 1,000
g = 2x 2 = 1.272;  ky = 5 = 1,500 '
- (3)
2 . 2 4 3
ks = & x & x = =1, : ke = 5 X = 1,8
5= 2x 2x 1,696; ke = 3 X £ 75
ke = 2 x 2y L X 6 - 2,040; kg ; 2 x g x L = 2,18
7 17 %" % 2 [ J
In general,
1
Kn = mf2
S sin®™! o do
0

From k, there is derived the formula

2n
m™ kp

kn+y =

For large values of n the following approximate for-

mula applies:
ky ~ /22 =1 (n > 4)
x

while for small values of n the approximate formula is

Kk, ~ ~//En - b+ q (n < U%)

i1

In some cases the bottom shape is better expressed by
N =B %+ Pp x°

and the value of uw is then obtained as

uw =k, B, + kn.ﬁh xB~1
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For nonintegral values of n the values of k, may
be read off figure 2,

In order to determine the force P exerted on the
float, we again consider the surface of the water to be at
rest and the float moving relatively to it with velocity
vV = V(t). The momentum of the fluid at the lower half
plane is known to be '

2
T=Zpc2V=21p (g) v o¢® (%)

from which, substituting %% = g, we obtain

aJ 3\ v& T B\ .2 av
DE e B) R (5)

P = X

o+
1}
3
o) .
77N

The momentum of the seaplane of mass m ig equal to
m (VO - V) and for the case we are here congidering where
the elasticity, for example, of the landing gear and float
bottom is neglected, this is equal to the momentum impart-
ed to the fluid, With

BE

TTp -_
ﬂ=~—2m—<§)~- (6)

B Y 2 _
Te @) Ve =0 (7, - W) NG
and

v=_ Yo (8)

2

1+ p ¢k

From expression (8) it may be seen that V() does not
depend on the bottom shape-but only on the width of the
wetted surface and on the mass. If the work of deforma-
tion 1s neglected then :

P=-m3y (9)

and we thus obtain

(10)

For briefness, we sget
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5
TT.p-:g-Vba =P1; %“=§ (11)
5o BHab e o .
5 - L (12)
(1 + u t?) u(E) |

The pressure dlstrlbutlon en the float bottom w1ll now
be determined. For X° < c2 the velocity potential ig:

—_ 2
VJ/c? - X% = -~ 7 ¢ 1 - (%)

The fluid pressure p 1s, in general,

3
p=-e [af T ovf o+ F(t)]

In the case we are considering F(t) 1is constant

since there 1s no guperposition of external variable pres-
sures. On the surface of the water

F(t) = = py/e. If
is the pressure above the air pressure p;, ‘then
[ 1
p=—'p|§%+§vx2
L
We have
3
v :-_R
x X
so that
2 VARG
Rl 8 S (BY LT s
u 2
P /1 - (%) Q\
c

The last term of the above équation does not apply to the
edge of the impact area and is small compared to the first
two terms,

With the aid of (8), (9), and (10) we obtain:

SN I R wot? u(l + W & )
PETEE / ) ()
R /1 - (%) o 2<.§>

This formula does not give-correct'yalues for the edge of
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the imvact area. There the flow is similar to that about
a planing surface moving sideways with velocity

v, = %% =7 (15)

P = q, -...-'.p_v‘?' . . (16)

or with

p
o = > Vo2

1
P =q, =g o (17)
max 1 ) 1+ n Eg) ﬁ?(g)

THE CONCEPT OF AN EQUIVALENT RIGID BOTTOM TO

REPLACE THE ELASTIC BOTTOM

From equation (12) it may be seen that B(f) depends
only on the form parameter of the float bottom. Such a
parameter may also be found for a float with elastic bot-
tom, Let yrel(g) be the elastic displacement at position

¢ due to the load P(f{), then
n(eg) = no(i) + Nre1(E) (18)

where TNo(f) represents the shape of the nondeformed

float bottom and MN(£) the shape of a nonelastic float
bottom which replaces that of the elastic float. The re-
sults obtained for the rigid float may thus be applied to
the case of the elastic float., The equivalent rigid float
fully takes into account the rate of expansion of the width
de/dt due to the elasticity,; that is, the main part of the
deformation; and only a2 small part of the deformation is
neglected, namely, that of the bottom opposite the chord
between the keel and edge of the impact area.

We must next consider how y,.,7 1is to be determined.

It may be seen from equation (14) for the pressure distri-
bution that the relative distribution of the pressure is
essentially independent of the shape of the float bottom,
ise., of u(f) since the last term in the brackets is very
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small compared to the other terms for the greatest part of
.the range 0 < x < ¢§. '

If the elastic deformation for the same relative pres-
sure distribution is proportional to the total load, then
the deformation under the load -B(f) at any position £
may be expressed in the form -

Mre1(t) = B(E) (ag + a1 &+ as & + 23 £ + ....) (19)
or witﬁ E = x. | |
nrel(x) = B(x) (ag + a; x + a2 %% + a5 x® + ....)

For Hriefness we shall denote the expression in parenthe-
ses which takes account of the elasticity by A(f):

(ap + a; € + az Ea + ag §3 + oe.ee) = A(E)

The coefficients a,, a;, az, az mnmust be determined,

for each type of float, either by experiment or computa-
tion., The pressure distributions given by equation (1U4),
which applies to rigid floats, are to be substituted and
thus the bending at the edge of the impact area determined,

We have assumed that the elastic deformation was pro-
portional to the load P, but due to the small thickness
of the float bottom this assumption will in many cases not
prove to be correct. In these cases, however, it may be
taken as a first approximation that for a moderate in-
crease in an assumed loading the increase in the deforma-
tion is proportional to the load increase.

In order to determine the deformaticn it may be as-
sumed first that the load is the same as that exerted on
the nondeformed float on impact, the corresponding defor-
niation under this load determined, and then the deforma-
tion when the load is slightly increased. In this way an
expression for the deformation may be found of the form

Mre1(x) = Mop1(x) + Blay, + a;, x + a, %% + cess)
If we then add T, and My, ;. Wwe obtain:
n0+n0 =ﬁ. =E1X+E3 .X2+§3 X3+-alo
rel o

and the same formulas apply for the determination of the
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"impact force as for the case where the deformation was
taken proportional to the load, provided we replace B3

by Bi.

This method of computation is admissible provided the
equation for y,..) gives sufficiently accurate values

corresponding to the lcad P first obtained; otherwise,
the computation must be repeated for a new value of P.
PROCESS FOR OBTAINING THE EQUIVALENT FLOAT BOTTOM AND
DETERMINING THE EFFECT OF THE ELASTICITY
ON TAE IMPACT FORCE

a) Mathematical formulation of the problem as an in-
tegral eguation.~ We have given My(t), w, A(f) and seek

to determine Mpgz3. From equations (12) and (19)

i ¢ '
Nyo1 = ACE) (20)
T L 1w £3)° (uo(f) + urer(f)) '

"and therefore,
£ A(E)
(l + ge)s nrel

w(€) = uo(f) + upey(l) =

and from equations (1) and (18)

- X
d
n=y 2ELEE s,

a0
so that for the determination of TM,..3, Wwe obtain the
following relation:

x ¢ A(E) 1

No(x) = = MNpg1(x) + [/ it (21)

2.3 /7§38 Mpe1(t)
e’ oo (1)

This is a nonhomogeneous, nonlinear integral (Volterra)
equation of the seccond class. No direct methods have so
far been developed for the solution of equations of this
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kind, In the case, however, where there exists a solution

u(t) = 0 the iteration method may probably lead to the
solution,. B ' '

b) Development into series and approximate solutions.-—
Instead of carrying out the iteration process a solution
was first attempted by development 1nto series and the
following series were tried: :

2
A! TT=po+_p1E +P2€ + e

B. 'n'(l+|_.|.Ea):5

Pttt E A, BT+ L
Co Mpop = B1' = + B! x% + B3!' x> + ...

These expressions may be simplified, depending on the type
of float, by the elimination, for example, of the first
term of the series. None of these series, however, con-
verges in general (corresponding to the nonconverging of

the series in the development of T%? =1 - x + x2% - x3 + =~

ves for x > 1),

It was then attempted to find approximate solutions
but it was not possible to obtain good approximations since
the system of equations to be solved was no longer linear
so that this method, too, was unsatisfactory.

The possibility of using the iteration method was not
tried since it could only be applied to individual cases
in connection with a graphical process, and the results
thus obtained would then have no general significance.

c) Obtaining solutions by applying the inverse proc-
esse.~ To obtain results of more general application, the
inverse process may be employed; that is, we start out
with the deformed bottom shape and seekx to find the origi-
nal undeformed shape.

We thus have as given M = M, + MNpep and the function
A(t), and we obtain in turn P, Nrer: 288 MNg:
Mo = M(t) - b o aE) (22)

(1 + p £2) u(t)

As an example, we choose the values
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n= B x )
ho=0 (23)
2 2 ? .
4(8) =9 R(E) = (7 &) WA
R(E) = ap * oy £ +ap £° weee |

which represent a straight V bottom float of a seaplane
having a very large mass., We thus obtain:

Mo = By x — - ¢ R(x)

- B
N, =8, x{1 = 2 ® __ R(x)
o 1 TT(ZBZ—
T
or with
@ P
______._=\\U=_.~
) 2
g 51\ Y1
w /
2 2
T =0 (1-5vaE)-= s (-Fve)s
- Bl % ' (al x2 + oy X3+ a, x4 + eve)

U, = ki B (1 -2y ao> - B 2y (kg ooy xF ko X al)

We have
B = __g._._.
- ky Bi
B = 4
=0 2 2 2
lel l b F\UCLO "'Bl _F-r\[/(kg a:1£+k3 Q,a E +-nqou)
so that
3
3; =1~ V¥ (k) ag + kg o £ + k; oy £2)
and at ¢ = 1, where the maximum impact force is to be ex-
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pected,
13_'{'91 B(l) - +.  S ”+ )
B B—(l) - l S \U (kl a,o + kg Cr,l k3 as RN
0 o]

The deformation is:

E .
Mre1 = B(£) A(¢) = @ R(E)
and attaing its maximum value for

B [R(E) + ERI(E)] = 0

From the above equation

— R (t)
£ =F ="

and therefore

or

and thus (for £< 1)

g?ééi (ky op + kn ay + kg Qg + ees)

For E > 1 the greatest deformation is at ¢ = 1,

!
o
-
<
|
=

or

<
p=d
=
i
Fl
B
c
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and therefore,

Brel _ _ Mre1(l) mw k ap + ko @y + kg ag + ...

As a first example (fig. ®a), let the following val-
uegs be chosen:

n=28 x
w =0
and A= o £(E-1)
so that
R = E(1 - £) (ag = 0, @ =1, ap =~ 1)

In this case the bettom (construction A) is deformed be-
tween the keel and the chine in such a manner that for a
constant impact force TMNpel would be a parabola.

The maximum deformation is at

£=- (1 =-8), ¥_-2
| 1 - 2% 5
so that
B 27 7. Mre1
zrel _ =0 (y . rel . 2,89 _ZI®
B R Y6 P 3D

The relative increase in the impact force in this casge
is therefore 2.89 times the ratio of the maximum deforma-
tion M,.,7 to the dead rise TN(1).

As a second example (fig. 3@b), let the following val-
ues be chosen:

n=81x
@ =0
and A= o t2
so that
R = ¢ (g =0, a =0, ag = 1)
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- In this case (congstruction %b), the bottom is elastic
at the gsides so that the chine moves up on impact, The
form of the . A .function is then obtained by assuming a
rigid boettom with the impact force approximately concen-
trated near the edge of the impact area. '

The maximum deformation is now at x = 1, so that
Brel B 5 Mre1(l) -
Bs n(1)

This construction therefore leads to a decrease in
the impact force, namely, by twice the ratio of the defor-
mation at the edge to the final dead rise T(1l).

For the third example (fig. 3c), let the values chosen

be:
N =48 x
p = C
2
and A=o0 (1~ E7)
so that

R=1=-¢t% (o =1, a, =0, ag == 1)
(congtruction C).

The maximum deformatisn is at

2

P 1l - E s e = l
sc that
Bre1 3 /"*ﬁrel ﬁ:rel
= _. 5 = 2.6
Bo A TEN) n(1)

In this case, therefore, the relative increase in the
impact force is 2.6 times the ratio of the maximum defor-
mation to the dead rise. oo T

From these examples it may be deduced that under cer-
tain conditiens the effect of the elasticity of the tottom
may be of some importance but in especially unfavcrable
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cases the effect may even be more considerable, so that no
conclusions of general application can be attached to the
results obtained from the examples just given.

SUMMARY

For several particular cases of possible float-bottom
shapes the impact force due to the elasticity deformation
was compared with that obtained for the rigid bottom. The
work carried out congiders, however, only part of the ef-
fect of the elasticity on landing and obviously the less
important part. A much more important effect is that of
the elastic connection between the principal masses of the
seaplane and the floats, and this problem still awaits so-
lution,

Translation by S. Reiss,
National Advisory Committee
for Aeronzutics.
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Al
= 1 X,
X b4
L_' __)l g =1
X = B/2
c = B/2
Figure 1.- Notation for rigid V-type float bottom landing on
water.
A I v
2.0 ,///
/f( II v
4 (a) III
1.6
EREN
// T 1 1
/
1.2
)4
7
kn
7
.8 A
//
/ |
4 I ——f—— 7
/
II ~ iv
0
0 2 4 6 8 (¢) IIT
n Figure 3.- Several types of
. possible deforma-
Figure 2.~ Values of k . tion for float bottoms.

() Points I,1I,II1,IV, and V
are mutually fixed and
bottom is deformed between 1I-III and III-IV.
(b) Points I,II] and V are mutually fixed and bottom is deformed at
II and IV. (c) Points I,II,IV and V are mutually fixed and deformation
is possible at the keel III.
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